Highly efficient and selective isolation of rare tumor cells using a microfluidic chip with wavy-herringbone micro-patterned surfaces.

نویسندگان

  • Shunqiang Wang
  • Antony Thomas
  • Elaine Lee
  • Shu Yang
  • Xuanhong Cheng
  • Yaling Liu
چکیده

Circulating tumor cells (CTCs) in peripheral blood have been recognized as a general biomarker for diagnosing cancer and providing guidance for personalized treatments. Yet due to their rarity, the challenge for their clinical utility lies in the efficient isolation while avoiding the capture of other non-targeted white blood cells (WBCs). In this paper, a wavy-herringbone (HB) microfluidic chip coated with antibody directly against epithelial cell adhesion molecule (anti-EpCAM) was developed for highly efficient and selective isolation of tumor cells from tumor cell-spiked whole blood samples. By extending the concept of the hallmark HB-Chip in the literature, the wavy-HB chip not only achieves high capture efficiency (up to 85.0%) by micro-vortexes induced by HB structures, but also achieves high purity (up to 39.4%) due to the smooth wavy microstructures. These smooth wavy-HB structures eliminate the ultra-low shear rate regions in the traditional grooved-HB structures that lead to non-specific trapping of cells. Compared with the grooved-HB chip with sharp corners, the wavy-HB chip shows significantly higher purity while maintaining similarly high capture efficiency. Furthermore, the wavy-HB chip has up to 11% higher captured cell viability over the grooved-HB chip. The distributions of tumor cells and WBCs along the grooves and waves are investigated to help understand the mechanisms behind the better performance of the wavy-HB chip. The wavy-HB chip may serve as a promising platform for CTC capture and cancer diagnosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation of Customizable Micro-wavy Pattern through Grayscale Direct Image Lithography

With the increasing amount of research work in surface studies, a more effective method of producing patterned microstructures is highly desired due to the geometric limitations and complex fabricating process of current techniques. This paper presents an efficient and cost-effective method to generate customizable micro-wavy pattern using direct image lithography. This method utilizes a graysc...

متن کامل

Isolation of circulating tumor cells using a microvortex-generating herringbone-chip.

Rare circulating tumor cells (CTCs) present in the bloodstream of patients with cancer provide a potentially accessible source for detection, characterization, and monitoring of nonhematological cancers. We previously demonstrated the effectiveness of a microfluidic device, the CTC-Chip, in capturing these epithelial cell adhesion molecule (EpCAM)-expressing cells using antibody-coated micropos...

متن کامل

Enhanced Cell Adhesion and Alignment on Micro-Wavy Patterned Surfaces

Various micropatterns have been fabricated and used to regulate cell adhesion, morphology and function. Micropatterns created by standard photolithography process are usually rectangular channels with sharp corners (microgrooves) which provide limited control over cells and are not favorable for cell-cell interaction and communication. This paper proposes a new micropattern with smooth wavy sur...

متن کامل

A Micromixer for Continuous Labeling of Circulating Tumor Cells with Micro-beads as a Highly Selective Isolation

Rare circulating tumor cells (CTCs) have been identified in peripheral blood from cancer patients and have been proved to be a main cause of metastatic disease. Current strategies for size based on isolation of CTCs has been technically challenged owing to their overlapped size value(e.g., CTCs ~16-20μm diameter and leukocytes ~8-14 μm). Here we describe the development of a unique microfluidic...

متن کامل

Positioning and Orientation of Adherent Cells in a Microfluidic Chip using the Micro Patterning of a Parylene-C Film

A new biochip for adherent cell trapping using micro patterned parylene-C is presented. We demonstrate the ability of micro patterned parylene-C films to provide an efficient positioning and orientation of cells. It is also possible to fix one cell separate from the others which may be crucial in the development of biodevices for the single-cell analysis. The developed method does not require a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 141 7  شماره 

صفحات  -

تاریخ انتشار 2016